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Abstract An approach is developed for h e  calculation of fluctuations in an ensemble of 
systems obeying Maxwell-Baltzmann, Fed-Dirac or Base-Einstein statistics, and in which a 
specified set of physical quantities is consemd. The technique ,is applied to WO situations of 
interest: in the first only energy is conserved while in the second both energy and number are 
conserved. 

1. Introductiou 

Consider a set of N identical systems with given total energy E distributed among a set 
of energy levels E l ,  Ez, . . . and let g p ( p  = 1,2, . . .) be the number of available states 
for energy level E p .  We suppose thaf'there are np systems in energy level Ep,  and the 
corresponding number of ways of realizing this distribution is then given by the standard 
expressions ~. 

for Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics respectively [l]. A basic 
problem in statistical mechanics is then the calculation of fluctuations of the occupation 
numbers np about their mean distributions in the l i t  of np >>~ 1. This in general involves 
a computation of the expectation value of ni subject to the conservation constraints fiat 

E n p  = N and . x n p E p  = ' E  
~ 

P P 

are maintained constant, and the standard approach to this has been through the use of the 
Darwin-Fowler method [l]. The basic point of the present communication is to develop an 
alternative technique for the calculation of these fluctuations. Our approach is more direct 
than that of Darwin and Fowler and avoids the use of complex variable theory inherent 
in their method. It is also readily applied to situations where the number of conservation 
constraints is less or more than the two given above in (2): for example, the case of photons 
or phonons in which the number of systems can vary and only the total energy E is constant, 
or on the other hand, situations in which the conservation constraints (2) are supplemented 
by conservation of one or more components of the total linear or angular momentum of the 
systems. 
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2. Basic formulation of technique 

We begin by considering the form of W close to its maximum value. We let np = vp + yp 
where up are the standard equilibrium distributions (Maxwell-Boltzmann, Fermi-Dirac or 
BoseEinstein) which maximiize the corresponding W, and then readily obtain 

for I yp I << up.  Here 

= vpF[l- (v,F/gp)l (.,”)’ = V , B U  + (vpB/gp)l. (3b) 
To describe the fluctuations in the occupation numbers we now require to calculate the 

variance of np and the covariance of np and nq when the probability of obtaining the value 
np is given by the distribution (3), aqd when the possible values of np are related by the 
conservation constraints (2). We have 

M Z -  M (up ) - vp 

Cov(np, n,) = Cov(yp, yq) = A,) ( 4 4  
Var(n,) = var(yP) = U;VZ(A~)  (4b) 

where Ap = yp/up,  and it follows from equation ( 3 4  that the probability of obtaining the 
value A p  is proportional to 

Now, as mentioned earlier we are interested in situations where there are an arbitrary 
number of conservation constraints imposed on np, and we therefore postulate the existence 
of M such constraints of the form 

aspnp = K, ( I < s < M )  (64 
P 

where the K, are a set of given constants (equations (2) correspond to M = 2 with alp = 1, 
= E p ,  K1 = N, Kz = E). Correspondingly there will exist M constraints on the A of 

the form 
c a s p A p  = 0(1 4 s < M) (6b) 

P 

where U ,  = U ~ P O L . ~ .  This means that in equation (5 )  the number of independent A will be 
M less than the total number of A.  We can now use the M equations (6b) to express M 
‘dependent’ A in terms of the remaining ‘independent’ ones, leading to the result 

A(‘) = X ’ p $ ) A ,  ( 1 4 S S M )  (7) 
4 

where Acs)(l 4 s < M) are the ‘dependent’ A, implies a summation over the remaining 
independent A and the coefficients p$) can be readily expressed in terms of the U,. It then 
follows from equation (5) that 

J = exp ( - 1 ~ ’ T p , A p A 4 )  

P.4 

where 
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Now, for Ap having the probability distribution (Sa) it is known that 

Cov(A,, Aq)  = [T-’Ipq (9) 
[2] ,  and we therefore require to calculate T-l. To do this we consider the equation Tf = g 
which yields 

Multiplying this by pf’ and summing over 1 gives 

where 

( 1  1b) 

Substituting from equation (1 la) into (IO) then allows f to be expressed in terms of g, the 
relationship yielding 

b c = & ? + ~ k  SI P, (:I . 

Hence we obtain from equations (4) that 

At $e expense of some straightforward (albeit possibly lengthy) manipulative algebra, 
equations (13)  may now be applied to calculate Var(n,) and Cov(n,,nq) for any given 
set of conservation constraints. 

3. Applications 

We proceed to illustrate the above approach by first applying it to the situation where only 
the total energy is conserved and where the number of systems can vary; this will be the 
case for photons or phonons obeying Bose-Einstein statistics. Here M = 1, with the energy 
conservation constraint being given by the second of equations (2). The procedure outlined 
in the previous paragraph can then be readily implemented as the matrix V has only a single 
element, and we finally obtain from equations (13) 

-a,’.,’ Ep Eq 
Cov(n,, nq) = (14b) 

We note that Var(n,) is always less than the value (U,”) that it would take in the absence of 
the energy conservation constraint (2). This is due to the effect of this constraint in limiting 

c, .Pi ’ 
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possible variations of np; the proportional decrease in the value of Var(n,) brought about 
by the constraint is equal to the proportional conhibution of the state p to 1,u:E:. The 
energy constraint also has the effect of making Cov(n,, nq) always negative since if n, (for 
specified p )  is raised ubove its equilibrium value, the mean value of nq for all other q must 
lie below the corresponding equilibrium value. 

We now apply our technique to the situation considered at the outset where both number 
and energy are conserved corresponding to the two conservation constraints (2). The derailed 
implementation is straightforward, though rather more lengthy than that of the previous 
paragraph, and leads to 

It may be shown that the value of Var(n,) as given by (15u) is less than that given by 
(14u) and this corresponds to the additional effect of number conservation in limiting 
possible variations of n,. On the other hand, the value of Cov(n,,n,) as given by 
(15b) is not necessarily negative; in pdcular  if E ,  and Eq are respectively sufficiently 
large and sufficiently small compared with the mean value of E,, then Cov(n,,n,) will 
become positive. This perhaps initially surprising result that the introduction of a second 
conservation condition can make the covariance positive may be understood as follows. 
If n,, for ‘large’ Ep, is raised above its equilibrium value and if nq, for all Eq < E,, 
is decreased below its equilibrium value in order to conserve the total number N, it will 
clearly not be possible to simultaneously conserve the total energy E.  The only way to 
conserve both N and E when np is greater than its equilibrium value for ‘large’ Ep is for 
nq to be less than its equilibrium value for ‘intermediati‘ values of Eq and to be greater 
than its equilibrium value for ‘small’ values of Eq. Such a situation whereby the deviation 
of np from equilibrium has the same sign for both ‘large’ and ‘small’ Ep will lead to 
the possibility of Cov(n,, n,) becoming positive as described above. Finally we make the 
point that equations (15) can be readily shown to be equivalent to the results obtained by 
the Darwin-Fowler method as given in [ l ] .  

4. Conclusions 

In this paper we have developed a new approach to the statistical mechanical calculation 
of fluctuations. Our method is simpler and more direct than that of Darwin and Fowler, 
and has the advantage that it may be applied to situations in which there are an arbitrary 
number of conserved quantities. 
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